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The dependence of the stress-strain behaviour of polymer networks on functionality is investigated. The 
network is described in terms of a gas of simple units of arbitrary functionality f. The macroscopic 
deformation is taken into account by constraints, which allow molecular nonaffine deformations. For 
Gaussian network strands the model leads to the same stress-strain dependence as in the well known model, 
but shows a modified dependence of the modulus on functionality. 0 1997 Elsevier Science Ltd. 

(Keywords: polymer networks; stress-strain dependence; functionality) 

INTRODUCTION 

Polymeric networks are widely used in technological 
applications. Although the main reason for their large 
reversible elasticity is understood to originate from their 
molecular structure (long linear polymer chains cross- 
linked to form a network’), no simple, i.e. straight- 
forward, theory exists, which describes the properties 
of these elastomers adequately. There exist a large 
variety of phenomenologica124 and theoretical models, 
for example the tube mode15-7, slip-link models9, 
junction-fluctuation model” and special single-chain 
models1i-15, which explicitly assume a specific mechan- 
ism for the interaction of the network strands in order 
to fit experimental data of (stress-strain) experiments 
correctly. The assumed mechanisms, their mathematical 
implementation or the neglect of other mechanisms 
need further discussion, because these models fail to 
describe all modes of stress-strain experiments with the 
same set of parameters7. Therefore, we present as an 
alternative approach an analytical description for the 
molecular nonaffine deformation of polymer networks. 
Recently’6>‘7 we introduced the model without account- 
ing for network functionality. The purpose of that pub- 
lication was to work out the main ideas of the model for a 
simple caseI and for polydisperse polymer networkst7. 
As functionality is of major importance for the formation 
of a network, we now extend the model to an arbitrary 
functionality .fi 

In the next section we introduce the model, i.e. the 
expression for the total entropy of a network. Thereafter, 
the dependence of the entropy on the geometry of the 
introduced simple unit is calculated. The quasi-affine 
deformation of the network and a special macroscopic 
constraint are considered. 

*To whom correspondence should be addressed 

THEORETICAL MODEL 

In order to include the network functionality into the 
model described in refs 16 and 17 we replace the simplest 
unit of the description-one network strand-by f 
strands, which are connected chemically in one crosslink 
(Figure I). Therefore, the simplest unit (index su), i.e. one 
crosslink with its network strands, already includes 
features which depend on functionality. The total 
entropy of the network Snet(A) is given-analogous to 
equation (1) in refs 16 and 17-by the sum of the 
entropies of the simple units [first term of equation (1) 
following], the contribution to the entropy due to mixing 
of simple units (second term), the constraint of fixed 
number of simple units fi (Lagrange parameter p - l), 
and the macroscopic constraints ruling the deformation 
(Lagrange parameters a) 

I 
f-1 

&et CA) = kB M({c})Ssa({c)) n d3ri + kB 
i=l 

f-1 
X M({CI)gj({CI) JJ d3ri - Gj(A) (1) 

i=l 

A is the deformation matrix, i.e. A,,,,, = X,S,,,,, 
m,n = x,y,z (b,, = Kronecker delta), where the X, are 
the deformation ratios relative to the undeformed state. 
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Figure 1 Simple units for various functionalit 
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kB is the Boltzmann constant and k&,({<)) the 
entropy of the simple unit. (6) = {F’, , . ?‘_, } stands 
for the 3cf’ - 1) degrees of freedom of one simple unit (r’, 
are the coordinates of the free ends of the strands); the 
three translational degrees of freedom of the simple unit 
are integrated according to 

1.. .h($i) fid’ri = /...Bd3r; c2) 

Thus, Y; is replaced by 

The internal degrees of freedom of the central crosslink 
are already included in S,,({c}) (see equation (9)). 
M({c}) gives the distribution of the simple units 
depending on the coordinates < of its strand ends 
(empty_circles in Figure 1). The total number of simple 
units M depends on the number of network strands M 
according to 

&2’M 
f 

and is accounted for in equation (1) by the Lagrangian 
multiplier p - 1. The factor two is a consequence of the 
fact that every network strand belongs to two crosslinks, 
and network vacancies are not considered in this model, 
although the inclusion of vacancies is straightforward. 

G,(A) is a macroscopic parameter, which is defined by 
experiment16. Because macroscopic deformation causes 
changes in lengths, the macroscopic parameter must be 
a function of all molecular lengths in the considered 
sample. In our approximation of a noninteracting gas of 
indistinguishable simple units the macroscopic sample is 
simply the sum over the contributions of any simple unit 
gj({Y;}), i.e. 

(5) 
J i-l 

This expression must be equal to the deformed macro- 
scopic parameter relative to the undeformed state, i.e. to 

.I’ 

/m 1 
G,(A) = M~(‘LC))gj({~C)) nd3r, (6) 

icl 

where MO({Y;.}) is the distribution of simple units without 
macroscopic constraints (see equation (1)). In our ‘gas’ 
model MO({Y;}) IS calculated from equation (1) with 
rj = 0. Clearly G-(A) corresponds to the case that the 
contribution gj( c}) i of any simple unit is increased 
proportionally to the macroscopic deformation. 

Note that equation (1) cannot describe affine deforma- 
tion, because the introduction of ti constraints (one for 
every simple unit) would mean that the units are dis- 
tinguishable, i.e. the assumed contribution of the entropy 
of mixing would be inconsistent. 

Distribution M( { <}) without external constraints 
Variation of equation (1) (cf. ref. 17) with respect to 

the distribution M({c}) with yZ = 0 leads to 
,.&“(~r71) 

where the Lagrangian parameter p is already eliminated. 

Entropy of one simple unit of functionality f 
The entropy of the simple unit can be calculated from 

the partition function. Assuming Gaussian partition 
functions for single strands with modulus a we obtain the 
partition function for the simple unit 

.2((G)) = const (8) 

7 is the coordinate of the central crosslink, which is the 
integration variable. Since we assumed Gaussian chains 
we immediately obtain with equation (3) 

(9) 
Thus, the dependence on functionality enters into 
equation (1) through the entropy of the simple unit (S, 
is a constant). 

RESULTS 
Quasi-afJine deformation 

As quasi-affine limit we define (see refs 16, 17) the case 
when all functions gj( {c}), e.g. the set of all polynomials, 
are taken as constraints. A transformation of variables in 
the constraints [last line of equation (l)] immediately 
yields 

M({G}) = M,(AP’{~})(@-lr (10) 

Inserting equation (10) into equation (1) followed by 
straightforward calculation results in 

1 ( > 1 
+M l-7 ln131 

> (11) 

= Sner.0 {II -ln13} (12) 

where equations (7) and (9) and the deformation 
invariants 

II =x’,+x;+x;, I, = x:x; + x2x; + xix;, 

I, = x%$x; (13) 

were used. Snet,O includes constant terms. Now we 
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calculate the stress from the free energy F(A) according 
to 

(14) 

This expression is proportional to the result of the model 
without consideration of functionality16. Both models 
are obviously equivalent for the case f = 2, where the 
simple unit is just a single strand (Figure 1). Graessley18 
obtained qualitatively the same result but a different 
prefactor ((1 - 2/f) instead of (1 - l/f)) for an infinite 
network with affinely deformed outer crosslinks and 
freely fluctuating internal ones. 

Special macroscopic constraint 
We now investigate the case that there are just three 

macroscopic constraints; we choose (for simplicity and 
symmetry arguments) 

The index 1 indicates that we take into account only the 
I-th component of the vectors 6. In g[({<}) we sum over 
all end-to-end distances of the simple unit (?‘i are the 
coordinates of the external points). The case of a single 
strand as simple unitI is obtained forf = 2. Use of the 
constraint that the centre of gravity is fixed at the origin 
(equation (3)) leads to 

(16) 
With these functions we calculate the maximum of the 
entropy by variation of the entropy S,,,(A) with respect 
to the distribution M({c}), which gives the following 
expression for the Lagrange parameter 

ri2! I-’ 
f ( 1 xi’ (17) 

According to equation (14) we then get for the stresses 

1 d 
0, = MkaT 1 -7 K{Z1 - lnZ3} 

( > 
(18) 

which is identical with the quasi-affine case (equation 
(14)). This is a consequence of the use of Gaussian 
strands. 

The modulus at X = 1 is different from the propor- 
tionality (1 - 2/f) d erived theoretically in refs 18 and 19 
but in slightly better agreement with the experiments of 
Mark2’ (Figure 2). Especially the ratio of the moduli for 
f = cm and f = 3 is 1.5 compared to 3 in the theories of 
refs 18 and 19. The experimental ratio for f = 37 is 
2: 1.420, showing very good agreement with the model. 
Nevertheless, both models deviate systematically from 
the data. 

DISCUSSION 

In this paper we have shown how to include the 

0.25 
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o,151;,'I'."'."',""':~'I 
2 345678 9 10 11 37 

f 
Figure 2 Dependence of the modulus on functionalityf. Data for the 
elasticity constant 2C, from Mark” are fitted with the models. Q is the 
goodness of fit. The fit parameters are Pl = 0.365 and P2 = 0.298 

functionality of crosslinks into a recently introduced 
model for the behaviour of polymer networks. We 
showed that the predicted functionality dependence of 
the modulus agrees with the experiments of Mark2’ 
slightly better than that from other theories’8Y1g. 

The main advantage of the model is its straightforward 
applicability to calculations of the network entropy 
without requiring a special mechanism for the molecular 
nonaffine deformation. This simplifies mathematical 
calculation and therefore allows a straightforward treat- 
ment of various features of networks, for example poly- 
dispersity17 and network vacancies. 

Naturally, the result for S,,,(A) depends on the 
particular choice for gj( (6)). Unfortunately, the expres- 
sion for gj({G}) corresponding to the experimental 
situation cannot be given simply. However, it must 
possess the unit of length, because macroscopically the 
length of the sample is changed16. In the present paper we 
considered two special cases to show how functionality 
can be incorporated into the model. In a final analysis the 
results correspond to other results obtained in litera- 
ture’8,1g,21, except for the functionality dependence. 
Nevertheless, the crucial point is the use of just macro- 
scopic constraints (which allow nontine deformation 
on a molecular scale) resulting in good agreement with 
experimental measurements. 
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